Strukturierte Echtzeitanalyse von Prozessen

Digitaler Zwilling für Robotikanwendungen

In vielen Fällen sammeln digitale Zwillinge Daten aus einem Prozess, reichern diese mit Informationen an und leiten daraus, z.B. über Berechnungen, Konsequenzen für zukünftiges Handeln ab. Richtig genutzt ergeben sich somit zahlreiche Vorteile für Prozessoptimierungen und Verbesserung der Produktqualität. Aber wie erhält der digitale Zwilling mit relativ wenig Aufwand die dafür notwendigen Daten? Und wie wird es möglich, aus der Fülle der Daten die wirklich relevanten zu extrahieren und diese sinnvoll weiterzuverarbeiten?
Über den intelligenten Adapter für den digitalen Zwilling lassen sich ohne zusätzliche Hardware Prozesssensordaten automatisch nutzen, sowohl für die Qualitätssicherung als auch die Anlageninstandhaltung und -optimierung.
Über den intelligenten Adapter für den digitalen Zwilling lassen sich ohne zusätzliche Hardware Prozesssensordaten automatisch nutzen, sowohl für die Qualitätssicherung als auch die Anlageninstandhaltung und -optimierung.Bild: ArtiMinds Robotics GmbH

Je nach Lösungsansatz gelangt man zu einem digitalen Zwilling nur, indem man weitere Hard- oder Software in die abzubildende Anlage integriert. In Robotik-Anwendungen gibt es aber einen relativ einfachen Weg, einen digitalen Zwilling zu realisieren. Dr. Sven Schmidt-Rohr, Geschäftsführer bei ArtiMinds Robotics, erläutert: „Aus unserer Sicht ist ein digitaler Zwilling nur sinnvoll, wenn er einfach in den vorhandenen Prozess integriert werden kann. Wir sprechen bei unserer Lösung daher auch vom intelligenten Adapter für den digitalen Zwilling, weil sich damit sehr schnell und ohne den Einsatz weiterer Hardware ein digitaler Zwilling erzeugen lässt. Wir nutzen dazu den Roboter, der naturgemäß das zentrale Element einer Teilanlage ist. Er ist verknüpft mit Sensorik und Aktorik und kommuniziert mit diesen Komponenten ohnehin.“ Sprich: Im Roboter sind sehr viele relevante Prozessdaten bereits vorhanden. Setzt man hier mit einer Lösung zur Datensammlung an, lässt sich diese kompakt integrieren und einfach verwenden. Es entsteht eine schlanke Lösung, die sich mit wenig Aufwand in einen bestehenden Prozess einbinden lässt. Wie das konkret aussehen kann, zeigen die Robotik-Experten von ArtiMinds mit ihrer Robot Programming Suite (RPS).

Komplexe Programme und Analysen via Drag&Drop erstellen

Mit der RPS lassen sich in einem einzigen Tool Roboteranwendungen planen, programmieren, betreiben, analysieren und optimieren. Der Clou: Die No-Code-Programmierung ist herstellerunabhängig und wird per Drag&Drop über einzelne Funktionsbausteine erledigt. Den nativen Robotercode erzeugt die Software dann automatisch. Trotz des einfach zu bedienenden Ansatzes lassen sich sehr komplexe Programme realisieren. Diese Vorgehensweise verfolgt die Programming Suite aber nicht nur beim Programmieren, sondern auch bei der Analyse. Mit dem Zusatzmodul Learning & Analytics for Robots (LAR) lassen sich Live-Sensordaten überwachen, analysieren und optimieren. Auch die Analysen werden mit wenigen Klicks und über die entsprechenden Parameter an die jeweilige Anwendung angepasst. Mit der LAR kann man also bereits in der Entwicklung den digitalen Zwilling erstellen. Er gibt dann detaillierte Einblicke in den robotergestützten Produktionsprozess. Basierend auf der Programming Suite werden Live-Sensordaten von Roboter, Kraftsensor, Bildverarbeitungssystem und Endeffektor (sprich dem letzten Element der kinematischen Kette, also z.B. dem Greifer oder Schweißkopf) von der Robotersteuerung übertragen. Die Sensordaten werden automatisch zerlegt, den einzelnen Bausteinen zugewiesen und dauerhaft in einer lokalen Datenbank beim Anwender gespeichert.

Zum Erstellen des intelligenten Adapters für den digitalen Zwilling navigiert der Roboter-Programmierer, basierend auf den einzelnen Funktionsbausteinen, durch die verschiedenen Sensordaten des Roboterprogramms. Schmidt-Rohr erläutert: „Jeder Baustein dient ja der Bewältigung bestimmter Aufgaben. Unser LAR-Tool macht nun abhängig von den einzelnen Bausteinen automatisch Vorschläge für geeignete Analyse- und Überwachungsoptionen. Auch hier wählt der Anwender dann aus vordefinierten „Tiles“, das heißt aus Analysemethoden, oder „Rules“, den Überwachungsmethoden, die für die jeweiligen Sensordaten interessant sein könnten, aus. Dieses Vorgehen reduziert die Einrichtungszeit. Zudem können auch Anwender ohne tiefgehende Expertenkenntnisse komplexe Prozesse verstehen.“

Dashboards für die übersichtliche Darstellung relevanter Daten lassen sich einfach erstellen und flexibel an den jeweiligen Anwendungsfall anpassen.
Dashboards für die übersichtliche Darstellung relevanter Daten lassen sich einfach erstellen und flexibel an den jeweiligen Anwendungsfall anpassen.Bild: ArtiMinds Robotics GmbH

Zur Visualisierung der Prozessdaten lassen sich Dashboards einrichten. Diese können Informationen aus verschiedenen Prozessen bündeln oder aber sehr detaillierte Analysen für spezielle Teilprozesse anzeigen. „Was in den Dashboards angezeigt wird, lässt sich sehr flexibel konfigurieren. So kann jeder Anwender die Lösung wählen, die zu seinen Anforderungen am besten passt. Die Visualisierung von Prozessen ist in 2D- oder 3D-Darstellung möglich. Auch dafür haben wir eine große Auswahl an Standard-Kacheln“, so Schmidt-Rohr. Zur Analyse von Kraftverläufen entlang eines Roboterpfades beispielsweise empfiehlt sich die Darstellung in 3D-Diagrammen, während für die Auswertung von Prozesstoleranzen 2D-Diagramme besser geeignet sind.

Qualitätssteigerung und Prozessoptimierung

Von einem intelligenten digitalen Zwilling, der sich einfach einrichten lässt, profitieren Anwender auf vielfältige Weise. In Bezug auf Qualität werden in der automatisierten Produktion zwei Themen immer wichtiger: die digital unterstütze Anlagenwartung und die digital verwaltete Produktqualität. Beide sind bei genauer Betrachtung eng miteinander verknüpft. Der intelligente Adapter für den digitalen Zwilling kann bei beidem helfen. Ohne zusätzliche Hardware sammelt er inline automatisch anfallende Sensordaten des Prozesses und wertet diese aus. So dokumentiert er detailliert das Prozessverhalten für jeden Tag und speichert die Historie des digitalen Zwillings ab. Man erhält also Einblicke in den Produktionsprozess, die zuvor nicht so einfach möglich waren. Anlagenbetreiber müssen sich nicht länger auf das „Bauchgefühl“ oder das gute Ohr des langjährig erfahrenen Anlagenbetreuers verlassen, sondern haben klare Daten und Fakten, die den Zustand der Anlage und die Qualität der hergestellten Produkte widerspiegeln. Die detaillierte Dokumentation des gesamten Prozessverhaltens für jeden Takt ist ein sehr hilfreiches Tool für die Prozessoptimierung und Qualitätssteigerung. Gerade bei sporadisch auftretenden Fehlern ist rückblickend oft schwer nachvollziehbar, was die Ursache dafür ist. Werden Prozessdaten aufgezeichnet, ausgewertet und konsequent abgelegt, lassen sich auch im Nachhinein noch Ursachenforschung betreiben und Fehler beheben.

Neben den historischen Daten zeigt der digitale Zwilling aber auch das aktuelle Prozessverhalten auf und hilft dabei, Anomalien in Echtzeit aufzuspüren. Gepaart mit cleveren Berechnungen kann automatisch ermittelt werden, welche Prozessanpassungen notwendig sind, um eine Anlagenstörung oder Produktqualitätsverletzungen zu verhindern. Das Start-Endpunkt-Analyse-Tile bspw. berechnet automatisch Vorschläge, wie das Roboterprogramm geändert werden kann, um auftretende Toleranzen in einem bestimmten Teilprozess optimal auszugleichen. So wird es dem Anlagenbetreiber möglich, im laufenden Prozess schnell und zielgerichtet zu reagieren. Zudem lassen sich Vorhersagen treffen in Bezug auf Anlagenstörungen einerseits und Produktqualitätsverletzungen andererseits. Dazu überwacht bspw. das Epsilon-Tile, bei welchem Teilprozess die Sensordaten einen unerwarteten Verlauf nehmen.

Tiles und Rules

Unter Tiles verstehen die Roboterexperten konfigurierbare Ansichten auf rohe oder aufgearbeitete Daten der Roboterbewegung. Anwender können aus verschieden Typen von Tiles auswählen, etwa um Plots von Kraftverläufen oder Gelenkwinkelbewegungen zu sehen. Auch statistisch aufbereitete Ansichten ausgewählter Bausteine über Zeitverläufe hinweg oder deren Erfolgsraten lassen sich darstellen. Tiles können konfiguriert werden, etwa um die Daten auf den Achsen zu ändern (z.B. Weg-Kraft Diagramme vs. Zeit-Kraft Diagramme). Die darunterliegenden Daten lassen sich flexibel austauschen.

Rules dagegen prüfen automatisch Daten, um festzustellen, ob bestimmte Eigenschaften erfüllt werden. Dabei teilen sie Durchläufe in zwei Kategorien ein: solche, die mit den Bedingungen übereinstimmen und solche, die sie verletzten. Beispielsweise können Anwender Schwellwerte für Prozessparameter definieren, also etwa die maximale und minimale Kraft während eines Fügevorgangs. Bewegt sich die Kraft außerhalb des zulässigen Bereichs, wird die Verletzung erkannt und der Anwender kann die Abweichung verifizieren und bewerten. Auch komplexere Analysen wie etwa das Verlassen definierter Bereiche aus Hüllkurven, die automatisch aus bestehenden Daten errechnet werden, sind möglich. Regeln können sowohl auf Archivdaten als auch auf aktuelle, gerade laufende Projekte angewendet werden.

https://www.artiminds.com
ArtiMinds Robotics GmbH

Das könnte Sie auch Interessieren

Bild: Wittenstein SE
Bild: Wittenstein SE
Veränderungen in Aufsichtsrat und Vorstand bei Wittenstein

Veränderungen in Aufsichtsrat und Vorstand bei Wittenstein

Im Vorstand und Aufsichtsrat von Wittenstein gibt es Änderungen: Dr. Manfred Wittenstein, der als bisheriger Aufsichtsratsvorsitzender mit Ablauf der regulären Amtsperiode auf der Hauptversammlung aus dem Aufsichtsrat ausgeschieden ist, wird das Gremium weiterhin als Ehrenvorsitzender unterstützen. Dr. Anna-Katharina Wittenstein wechselt nach gut sieben Jahren im Vorstand in den Aufsichtsrat des Unternehmens.