Erste marktreife KI-Anlage für Lackieranlagen

Advanced Analytics von Dürr ist die erste marktreife KI-Anwendung für Lackieranlagen. Die intelligente Lösung, die neueste IT-Technologie mit Maschinenbaukompetenz kombiniert, identifiziert Fehlerquellen und ermittelt optimale Wartungszeitpunkte. Zudem spürt sie bislang unbekannte Zusammenhänge auf und passt mit diesem Wissen selbstlernend den Algorithmus an der Anlage an. Erste Praxiseinsätze belegen, dass die Software von Dürr die Anlagenverfügbarkeit und die Oberflächenqualität lackierter Karosserien optimiert.

Warum tritt an einem Karosserieteil ungewöhnlich häufig derselbe Fehler auf? Wann ist der späteste Zeitpunkt, einen Mischer im Roboter auszutauschen, ohne einen Maschinenstillstand zu provozieren? Exakte Antworten sind wichtig für einen nachhaltig ökonomischen Erfolg. Denn jeder Fehler oder jeder unnötige Wartungseinsatz, der sich vermeiden lässt, spart Geld oder verbessert die Produktqualität. „Präzise Aussagen zur Früherkennung von Qualitätsmängeln oder Ausfällen gibt es bisher kaum. Und wenn, basieren sie in der Regel auf einer mühsamen analogen Datenauswertung oder Trial-and-Error-Versuchen. Mit künstlicher Intelligenz (KI) geht das jetzt wesentlich genauer und automatisch“, erklärt Gerhard Alonso Garcia, Vice President MES & Control Systems bei Dürr.

Die neue selbstlernende Anlagen- und Prozessüberwachung Advanced Analytics erweitert DXQanalyze. Die digitale Produktfamilie von Dürr beinhaltete bereits die Module Data Acquisition für die Erfassung von Produktionsdaten, Visual Analytics für deren Visualisierung sowie Streaming Analytics. Mit letzterem können Anlagenbetreiber nahezu in Echtzeit mit Hilfe einer sogenannten Low-Code-Plattform analysieren, ob es in der Produktion zu Abweichungen von zuvor festgelegten Regeln oder Sollwerten kommt.

KI-Applikation mit eigenem Gedächtnis

Advanced Analytics kombiniert große Datenmengen einschließlich historischer Daten mit maschinellem Lernen. Im übertragenen Sinne bedeutet das: Die selbstlernende KI-Applikation besitzt ein Gedächtnis. Dadurch kann sie, basierend auf den Informationen aus der Vergangenheit, sowohl komplexe Zusammenhänge in großen Datenmengen erkennen, als auch anhand des aktuellen Zustands einer Maschine ein Ereignis in der Zukunft sehr exakt prognostizieren. Dafür gibt es viele Anwendungsfälle in Lackieranlagen – auf der Komponenten-, Prozess- und Anlagenebene. @Zwischenüberschrift:Vorausschauende Wartung verringert Anlagenstillstand

Im Bereich der Komponenten zielt Advanced Analytics darauf ab, die Downtime durch prädiktive Wartungs- und Instandhaltungsinformationen zu verringern, wie etwa durch die Prognose der verbleibenden Lebensdauer eines Mischers. Wird das Bauteil zu früh getauscht, erhöht das unnötig die Ersatzteilkosten und Instandhaltungsaufwände, während ein zu später Tausch zu Qualitätsproblemen bei der Beschichtung und zu einem Maschinenstillstand führen kann. Advanced Analytics erlernt zunächst anhand hochfrequenter Roboterdaten die Verschleißindikatoren und das zeitliche Muster des Verschleißes. Da die Daten kontinuierlich erfasst und überwacht werden, erkennt das Machine-Learning-Modul – basierend auf der tatsächlichen Nutzung – Alterungstrends individuell für die jeweilige Komponente und berechnet so den optimalen Austauschzeitpunkt.

Machine Learning simuliert kontinuierliche Temperaturkurven

Die KI-Lösung verbessert die Qualität auf der Prozessebene, indem es Anomalien feststellt, etwa durch eine Simulation der Aufheizkurve im Trockner. Bisher stehen den Herstellern nur Daten zur Verfügung, die Sensoren bei Messfahrten ermitteln. Die Aufheizkurven, die für die Oberflächenqualität der Karosserie von entscheidender Bedeutung sind, verändern sich jedoch, da der Trockner in den Intervallen zwischen den Messfahrten altert. Der Verschleiß bewirkt schwankende Umgebungsbedingungen, etwa bei der Stärke des Luftstroms. „Heutzutage werden Tausende Karosserien produziert, ohne dass wir wissen, auf welche Temperaturen die einzelne Karosserie aufgeheizt wurde. Durch das maschinelle Lernen simuliert unser Machine-Learning-Modul, wie sich die Temperatur bei unterschiedlichen Bedingungen verändert. Dadurch erhalten unsere Kunden einen permanenten Qualitätsnachweis für jede Einzelkarosserie und können Anomalien feststellen“, sagt Gerhard Alonso Garcia.

Höhere Erstläuferquote steigert Gesamtanlageneffektivität

Auf der Anlagenebene wird die Software DXQplant.analytics mit dem Modul Advanced Analytics eingesetzt, um die übergreifende Gesamtanlageneffektivität (Overall Equipment Efficency, OEE) zu steigern. Die künstliche Intelligenz spürt systematische Fehler auf, wie z.B. wiederkehrende Qualitätsdefekte bei bestimmten Modelltypen, speziellen Farben oder an einzelnen Karosserieteilen. Das wiederum erlaubt Rückschlüsse, welcher Schritt im Produktionsprozess für die Abweichungen verantwortlich ist. Solche Fehler-Ursachen-Korrelationen erlauben es zukünftig, die Erstläuferquote zu erhöhen, da sehr frühzeitig reagiert werden kann. @Zwischenüberschrift:Anlagen-Knowhow und Digitalkompetenz gekonnt kombiniert

KI-fähige Datenmodelle zu entwickeln, ist sehr komplex. Denn maschinelles Lernen funktioniert nicht, indem man unspezifische Datenmengen in einen ’schlauen‘ Algorithmus einspeist, der daraufhin ein intelligentes Ergebnis ausspuckt. Stattdessen müssen relevante (Sensor-) Signale gesammelt, sorgfältig ausgewählt und mit strukturierten Zusatzinformationen aus der Fertigung versehen werden. Die Software von Dürr unterstützt verschiedene Einsatzszenarien,stellt eine Laufzeitumgebung für Machine-Learning-Modelle bereit und stößt ein Modelltraining an.

Interdisziplinäres Knowhow erforderlich

Advanced Analytics wurde von einem interdisziplinären Team entwickelt, das aus Data Scientisten, Informatikern und Prozessexperten bestand. Außerdem ging Dürr mit mehreren führenden Automobilherstellern Kooperationspartnerschaften ein. Dadurch standen den Entwicklern reale Fertigungsdaten und Beta-Site-Umgebungen in der Produktion für unterschiedliche Anwendungsfälle zur Verfügung. Zunächst wurden die Algorithmen anhand zahlreicher Testfälle im Labor trainiert. Im nächsten Schritt lernten die Algorithmen im Betrieb vor Ort weiter und passten sich selbständig an Umgebung und Nutzungsbedingungen an. Die Beta-Phase wurde kürzlich erfolgreich abgeschlossen und hat gezeigt, wie groß das Potenzial von KI ist.

www.durr.com
Dürr Systems AG

Das könnte Sie auch Interessieren

Bild: Sieb & Meyer AG
Bild: Sieb & Meyer AG
Ein weites Feld

Ein weites Feld

Frequenzumrichter ist nicht gleich Frequenzumrichter: Neben Standardausführungen und Modellen für mobile Applikationen stellen High-Speed-Umrichter für stationäre Applikationen eine besondere Nische dar. Genau hier positioniert sich das Unternehmen Sieb & Meyer – mit einer breiten Palette an Modellen und Ausführungen. Denn auch in diesem Bereich gilt es, auf die verschiedenen Anforderungen der jeweiligen Anwendungen einzugehen.

Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Maschinenfabrik 
Made in Stuttgart

Maschinenfabrik Made in Stuttgart

Die Stuttgarter Maschinenfabrik stellt eine vollständig digitalisierte Produktionsumgebung dar, in der vom Kunden individualisierte Produkte selbstorganisiert hergestellt werden. Dafür ist eine neue technologische Infrastruktur in Kombination mit einem durchgängigen Einsatz von digitalen Zwillingen erforderlich. Das erlaubt eine hohe Freiheit bei der Entwicklung von neuen Anwendungen und die nötige Flexibilität im Maschinenpark. Die Artikelserie soll beispielhafte Aspekte der Stuttgarter Maschinenfabrik beleuchten, um das Umsetzungsprojekt vorzustellen.