Wert und Nutzen der vorausschauende Wartung

Welchen Wert haben digitale Lösungen zur vorbeugenden Wartung? Bzw. wie teuer sind heutzutage Ausfallzeiten aufgrund von Geräteausfällen? Maschinenhersteller und auch Betreiber wünschen sich zunehmend mehr Einblick in den Maschinenzustand und insbesondere in den vorhergesagten Maschinenzustand.
Bild: Lean.IQ

In den letzten Jahren hat sich die Technologie zu intelligent vernetzten Maschinen stark vereinfacht und konkrete Anwendungsfälle beweisen bereits in zahlreichen Industriebranchen, dass sich durch vorausschauende Wartung Betriebskosten senken lassen, und die Produkt- und Prozessqualität an Nachhaltigkeit gewinnt. Digitalisierung bedient also genau die Anforderungen um im globalen Wettbewerb auch in Zukunft weiter vorne mitspielen zu können.

Vorteile der vorausschauenden Wartung

Kunden suchen nach smarten, digitalen Produkten, die ihr Programm zur vorbeugenden Wartung mit folgenden Vorteilen unterstützen:

Teile-Kosten und die Investitionsausgaben reduzieren. Durch die Reduzierung der Service-Kosten und die Erhöhung der Gesamtlebensdauer einer Maschine werden die langfristigen Investitionsausgaben reduziert. Darüber hinaus ist aufgrund des gestiegenen Vertrauens in den Betriebszustand ein reduzierter Ersatzteil-Bestand möglich.

Betriebliche Effizienz steigern. Wenn die Maschinen zwischen Service-Intervallen länger in Betrieb sind und zukünftig auftretende Probleme mit hoher Wahrscheinlichkeit voraussagen lassen, kann die betriebliche Gesamteffizienz verbessert werden. Das führt zu einem besseren Geschäftsergebnis und einem Wettbewerbsvorteil.

Laufende Compliance-Kosten verringern. Korrektive und vorbeugende Wartung ist aus arbeitsrechtlicher Sicht kostspielig. Die Verbesserung der Transparenz von Problemen, bevor sie auftreten, kann erhebliche Auswirkungen auf die Senkung der damit verbundenen laufenden Compliance-Kosten haben.

Produkt- und Prozessqualität steigern. Da Maschinen effizienter und mit höherer Qualität und Lebensdauer arbeiten, steigt auch die daraus resultierende Qualität und Effektivität der Prozesse, die von der Maschinenleistung abhängen.

Dies sind nur einige der Vorteile von ‚Predictive Analytics‘ im Rahmen eines Programms zur vorbeugenden Wartung haben kann.

Durch Hinzufügen weiterer Sensoren zu Geräten und in Kombination mit einer IoT-Plattform, die große Mengen von Maschinendaten von mehreren Maschinentypen, Standorten und Anwendungen erfassen, verarbeiten und visualisieren kann, können die folgenden zusätzlichen Vorteile erzielt werden:

Echtzeitüberwachung von Maschinen. Lokale Analysen auf Sensor- oder Geräteebene, mit einem Down-Sampling hochfrequenter Sensorwerte und Aggregation in der Edge zur Reduzierung von Latenz-Zeiten, Bandbreite und Speicherkosten in der Cloud, bei gleichzeitiger Transparenz zur Maschinenleistung.

Stream-Analytics. Daten analysieren, transformieren und nach Mustern sowie Trends untersuchen, die auf bestimmte Problembereiche hinweisen, können Fehler in der Maschine sehr schnell diagnostizieren. Dazu gehören die Anzeige des Maschinenzustands, Hinweise für die vorausschauende Wartung und der Servicebereitstellung.

Flexible Optionen zur Datenvisualisierung. Eine IoT-Plattform erlaubt eine für den jeweiligen Nutzer (und seine Rolle) angepasste Visualisierung. Dies ist insbesondere für Hersteller vernetzter Industrieanlagen von Interesse, die ihren Endkunden ein spezifisches Marken-Erlebnis bieten möchten.

Analyse für mehrere Maschinen, Regionen und Anwendungen. Durch das Sammeln von Daten von mehreren Maschinentypen an mehreren Standorten und in mehreren Anwendungen kann eine Vielzahl von Daten mithilfe von Big-Data-Tools gesammelt und analysiert werden, um Trends zu ermitteln, die möglicherweise nicht erkennbar sind, wenn nur einzelne Maschinen betrachtet werden.

Datenanalyse: Ein Reifegradmodell

In den letzten Jahren sind zunehmend digitale Datenmodelle, vor allem für rotierende Maschinen wie z.B. Pumpen und Motoren, auf den Markt gekommen. Dennoch steht die Branche im erweiterten Sinne der Datenanalyse noch am Anfang. Infolgedessen haben Unternehmen immer noch eine bedeutende Chance zur eigenen Differenzierung vom Wettbewerb, indem sie pragmatische Lösungen zur Datenanalyse entwickeln und einsetzen. Zudem hat sich gezeigt, dass speziell die Unternehmen besonders erfolgreich sind, die in kleinen Entwicklungsschritten vorgehen und so kontinuierlich ihren Wissensfortschritt aufbauen. Dieser Prozess beginnt in allen Fällen mit der grundlegenden Konnektivität und der Kombination aus bestehendem Wissen von Mitarbeitern zu Maschinen bzw. Komponenten. Im nächsten Schritt verknüpft man das Wissen mit Erkenntnissen darüber, was genau zu messen ist. Nun kann man versuchen Fragen zu beantworten wie z.B.: „Wie bestimmen wir automatisch, wann ein Aufzug mit einer Wahrscheinlichkeit von 60% innerhalb von 90 Tagen ausfällt?“

Erst nachdem diese durch Intuition getriebenen Hypothesen entwickelt wurden, kann die Datenanalyse auf reale Maschinendaten angewendet werden, um die sie im Laufe einer bestimmten Periode zu beweisen oder zu widerlegen. Die Kombination aus menschlicher Eingabe und intelligenter Automatisierung ist dabei eine Möglichkeit, einen Maschinenausfall vorherzusagen. Alternativ stehen heute sogenannte „Unsupervised Machine-Learning“ Algorithmen zur Verfügung, die selbständig aus verschiedenen Daten entsprechende Ableitungen treffen. Meist kann bereits nach einer kurzen automatischen Trainingsphase des Algorithmus in den operativen Betrieb gewechselt werden. Die Wahrscheinlichkeiten einer korrekten Voraussage sind in solchen Systemen >90%.

Best Practices führende Hersteller

Nachfolgend noch eine Reihe von Best Practices, einiger führende Nutzer von Predictive-Analytics-Technologien:

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: B&R Industrie-Elektronik GmbH
Bild: B&R Industrie-Elektronik GmbH
Flexibel lizenziert und sicher

Flexibel lizenziert und sicher

Als Automatisierungsanbieter muss B&R einen Spagat bewältigen: Zum einen gilt es, permanent neue
Technologien in neue Produkte zu gießen und auf den Markt zu bringen. Zum anderen müssen die Kunden aber auch zuverlässig und langfristig mit bestehenden Produkten und Lösungen versorgt werden. Dazu zählt
Hard- und Software, die über eine Einmalzahlung oder als Jahresabonnement gekauft werden kann. Die Anwender entwickeln mit der Engineering-Plattform Automation Studio auch ihre eigenen Lösungen und wollen diese wiederum für die Endkunden lizenzieren. Um hier einen zuverlässigen und nachhaltigen Weg für die gesamte Produktpalette zu beschreiten, arbeitet B&R mit Wibu-Systems zusammen.

Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Echtzeitsteuerung aus der Cloud

Echtzeitsteuerung aus der Cloud

Die Stuttgarter Maschinenfabrik bildet eine vollständig digitalisierte
Produktionsumgebung ab, in der maßgeschneiderte Produkte innerhalb der physikalischen Grenzen selbstorganisiert hergestellt werden können. Das erfordert eine neue technologische Infrastruktur, die auf dem Einsatz konvergenter Kommunikationstechnik und Echtzeit-Virtualisierung basiert. Zur Verwaltung virtualisierter Echtzeit-Steuerungsanwendungen bedarf es Erweiterungen von Orchestrierungswerkzeugen, die Cloud-Computing den notwendigen Determinismus ermöglichen.

Bild: INOSOFT GmbH
Bild: INOSOFT GmbH
Die Software hinter 
den Leitkegeln

Die Software hinter den Leitkegeln

X-Cone ist ein System zur Verwaltung von Leitkegeln im Straßenverkehr. Dessen Hersteller Buchhaus nutzt eine
Visualisierungslösung von Lenze, in der wiederum VisiWin 7 von Inosoft integriert wurde. Eine HMI-Software, die webbasiertes Arbeiten und Responsive Design unterstützt.

Bild: Uhlmann Pac-Systeme
Bild: Uhlmann Pac-Systeme
Weniger Risiko 
und bessere Qualität

Weniger Risiko und bessere Qualität

Die Industrie muss immer flexibler und schneller auf ihre Märkte reagieren, das gilt auch für Pharmaunternehmen. Infolgedessen werden Lieferzeiten ein zunehmend
entscheidendes Thema. Uhlmann Pac-Systeme, Systemanbieter für das Verpacken von Pharmazeutika aus Laupheim, wollte deshalb kürzere Durchlaufzeiten, beschleunigte Prozesse und Mehrkörpersimulation erreichen – und setzt dabei auf Simulationssoftware von Machineering.

Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Neues Modalanalysesystem mit bis zu 32 Sensoren

Neues Modalanalysesystem mit bis zu 32 Sensoren

Zur Schwingungsanalyse von Maschinen wurde am IFW ein neues Modalanalysesystem Simcenter SCADAS mobile der Firma Siemens beschafft. Hiermit ist es möglich sowohl die Eigenfrequenzen der Maschine oder eines Bauteils mit einer Modalanalyse, als auch die während des Prozess auftretenden Schwingungen mit einer Betriebsschwingungsanalyse zu identifizieren.

Bild: Contrinex Sensor GmbH
Bild: Contrinex Sensor GmbH
Taschenspieler

Taschenspieler

Smarte Sensoren sind das Herzstück der digitalen Fabrik: Sie machen
Anwendungen wie Condition Monitoring oder Predictive Maintenance überhaupt erst möglich. Die intelligenten Sensoren von Contrinex eignen sich für zahlreiche Einsatzgebiete, denn sie vereinen mehrere Erfassungsmodi in einem einzigen Gerät. Jetzt hat das Unternehmen als Zubehör das Tool PocketCodr-Konfigurator auf den Markt gebracht, mit dem sich die Sensoren ohne IT-Kenntnisse einrichten und abfragen lassen.