Virtuelle Inbetriebnahme

Fehler und Schäden mit Simulation vermeiden

Die Simulation am digitalen Zwilling macht die Inbetriebnahme von Anlagen und Maschinen mit automatisierten Bewegungen sicherer. Fehler fallen früher auf und können behoben werden, bevor die Anlage aufgebaut ist. So lassen sich Schäden und Verzögerungen vermeiden. Auch als Schulungstool für Bediener und Programmierer ist die digitale Maschine hilfreich.
Bild: ©HERRNDORFF_ images/stock.adobe.com

Im gängigen Konstruktions- und Inbetriebnahmeprozess wird eine Maschine zunächst geplant und konstruiert, darauf aufbauend werden Schaltpläne und Elektrik entwickelt und danach die Software programmiert. Die Maschine wird montiert, verdrahtet und angeschlossen und in Betrieb genommen. Dabei erfolgt die Überprüfung der Hardwareschnittstelle sowie der Anwesenheit aller Komponenten, der Sensoren und Aktoren. Beim I/O-Check (Ein-und Ausgangssignaltest) wird validiert, dass die Signale für Ansteuerung und Rückmeldungen ankommen. Mechanische Komponenten wie Antriebe und pneumatische Zylinder werden eingestellt. Dann erfolgt der Funktionstest: Die Software wird zunächst durch den Handbetrieb an der Anlage getestet, danach erfolgt die Grundstellungsfahrt und der Automatikablauf. Die manuelle Ansteuerung der Komponenten und Rückmeldungen der Sensoren stellt sicher, dass alle Teile im definierten Zustand und der richtigen Position für die anschließende Automatik-Fahrt sind. Festgestellte Fehler in der Software werden beseitigt und die Inbetriebnahme über den Anlauf der Produktion und die Produktionsbegleitung abgeschlossen.

 Bei der virtuellen Inbetriebnahme fallen viele Fehler bereits auf, bevor die Maschine montiert ist und Korrekturen bedeutend teurer wären.
Bei der virtuellen Inbetriebnahme fallen viele Fehler bereits auf, bevor die Maschine montiert ist und Korrekturen bedeutend teurer wären.Bild: ©Gorodenkoff/stock.adobe.com

Früher testen

Da Mechanik und Software erst spät bei der Inbetriebnahme getestet werden, fallen erst dann Fehler im Prozess auf. Es kann jetzt zu Verzögerungen kommen, weil Anpassungen oft aufwendiger als früher sind. Bei der virtuellen Inbetriebnahme wird in den Prozess des Anlagenbaus ein digitaler Zwilling der Maschine oder Anlage angelegt, anhand dem die Inbetriebnahme simuliert wird. Diese folgt einem ähnlichen Ablauf mit der Überprüfung der Schnittstellen und dem Vorhandensein der Komponenten in der Simulation sowie dem I/O-Check. Auch die Signale des Modells werden vollständig geprüft und Einstellungen an Komponenten in der Simulationssoftware vorgenommen. Diese virtuelle Inbetriebnahme findet bereits im Zeitslot mit Elektrik- und Softwareentwicklung der eigentlichen Inbetriebnahme statt.

Exakte Darstellung

Grundlegend für die virtuelle Inbetriebnahme ist ein CAD-Modell mit den 3D-Informationen aus der Konstruktion des Maschinenbauers. Die Komponenten können über eine Software animiert werden. Dafür muss die Struktur des Modells für die Kinematisierung geeignet und jedes Bauteil einzeln verfügbar sein, damit Teilkomponenten ausgewählt werden können. Alle Aktoren, die eine energieführende Bewegung ausführen, und alle Sensoren, die Bauteile erkennen und eine Rückmeldung aus der Maschinenumgebung liefern, müssen im Modell enthalten sein, sonst wird eine Nachrüstung erforderlich. Liegen mechanische Abhängigkeiten oder Bauformen nicht genau vor, wird es zwischen Modell und Wirklichkeit zu Abweichungen kommen. Deswegen ist die Korrektheit von Mechanik und Abläufen des Modells essentiell für die virtuelle Inbetriebnahme.

Teilunschärfe bleibt

Das Ziel ist, mit der virtuellen Anlage so nah wie möglich an die echte heranzukommen. Die virtuelle Inbetriebnahme betrachtet aber immer ein Ideal. Verluste und Reibungen der Anlage werden z.B. nicht exakt wiedergegeben. Je realer die Nachbildung, desto mehr muss simuliert und eingestellt werden und damit steigt der Aufwand. Deswegen ist es wichtig, zu wissen, was man genau erreichen will, um die notwendige Detailtiefe der Simulation festzulegen. Kinematik und Bewegungsabläufe lassen sich z.B. leichter virtualisieren als das Verhalten von Flüssigkeiten und Luftmassen, etwa bei Befüllanlagen von Rohrsystemen.

Seiten: 1 2Auf einer Seite lesen

blue automation Gmbh

Das könnte Sie auch Interessieren

Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Echtzeitsteuerung aus der Cloud

Echtzeitsteuerung aus der Cloud

Die Stuttgarter Maschinenfabrik bildet eine vollständig digitalisierte
Produktionsumgebung ab, in der maßgeschneiderte Produkte innerhalb der physikalischen Grenzen selbstorganisiert hergestellt werden können. Das erfordert eine neue technologische Infrastruktur, die auf dem Einsatz konvergenter Kommunikationstechnik und Echtzeit-Virtualisierung basiert. Zur Verwaltung virtualisierter Echtzeit-Steuerungsanwendungen bedarf es Erweiterungen von Orchestrierungswerkzeugen, die Cloud-Computing den notwendigen Determinismus ermöglichen.

Bild: INOSOFT GmbH
Bild: INOSOFT GmbH
Die Software hinter 
den Leitkegeln

Die Software hinter den Leitkegeln

X-Cone ist ein System zur Verwaltung von Leitkegeln im Straßenverkehr. Dessen Hersteller Buchhaus nutzt eine
Visualisierungslösung von Lenze, in der wiederum VisiWin 7 von Inosoft integriert wurde. Eine HMI-Software, die webbasiertes Arbeiten und Responsive Design unterstützt.

Bild: Uhlmann Pac-Systeme
Bild: Uhlmann Pac-Systeme
Weniger Risiko 
und bessere Qualität

Weniger Risiko und bessere Qualität

Die Industrie muss immer flexibler und schneller auf ihre Märkte reagieren, das gilt auch für Pharmaunternehmen. Infolgedessen werden Lieferzeiten ein zunehmend
entscheidendes Thema. Uhlmann Pac-Systeme, Systemanbieter für das Verpacken von Pharmazeutika aus Laupheim, wollte deshalb kürzere Durchlaufzeiten, beschleunigte Prozesse und Mehrkörpersimulation erreichen – und setzt dabei auf Simulationssoftware von Machineering.

Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Neues Modalanalysesystem mit bis zu 32 Sensoren

Neues Modalanalysesystem mit bis zu 32 Sensoren

Zur Schwingungsanalyse von Maschinen wurde am IFW ein neues Modalanalysesystem Simcenter SCADAS mobile der Firma Siemens beschafft. Hiermit ist es möglich sowohl die Eigenfrequenzen der Maschine oder eines Bauteils mit einer Modalanalyse, als auch die während des Prozess auftretenden Schwingungen mit einer Betriebsschwingungsanalyse zu identifizieren.

Bild: Contrinex Sensor GmbH
Bild: Contrinex Sensor GmbH
Taschenspieler

Taschenspieler

Smarte Sensoren sind das Herzstück der digitalen Fabrik: Sie machen
Anwendungen wie Condition Monitoring oder Predictive Maintenance überhaupt erst möglich. Die intelligenten Sensoren von Contrinex eignen sich für zahlreiche Einsatzgebiete, denn sie vereinen mehrere Erfassungsmodi in einem einzigen Gerät. Jetzt hat das Unternehmen als Zubehör das Tool PocketCodr-Konfigurator auf den Markt gebracht, mit dem sich die Sensoren ohne IT-Kenntnisse einrichten und abfragen lassen.