Vom Business Case zum Sensor

Predictive Maintenance ohne böses Erwachen

Predictive Maintenance, oder auch vorausschauende Instandhaltung, bildet einen der primären Anwendungsfälle im Spektrum der Industrie 4.0. Doch noch sind viele Unternehmen von den Ergebnissen enttäuscht, nachdem ihnen die technische Umsetzung gelungen ist. Eine planvolle Roadmap beugt dem vor, indem ein vorteilhafter Rahmen um das Werkzeug gezogen wird.
Beispielpfad für die Einführung von Predictive Maintenance als Auszug aus einer Smart Maintenance Roadmap
Beispielpfad für die Einführung von Predictive Maintenance als Auszug aus einer Smart Maintenance RoadmapBild: FIR e. V. an der RWTH Aachen

Predictive Maintenance soll insbesondere durch die vorausschauende Identifikation des optimalen Instandsetzungszeitpunkts die maximale Ausnutzung des Abnutzungsvorrats, bei gleichzeitiger Vermeidung ungeplanter Stillstandzeiten, erreicht werden. Eine frühe Störungsvorhersage erhöht außerdem den Planungsgrad in Bezug auf nicht vermeidbare Stillstände, da beispielsweise Vorlaufzeiten präziser bestimmt werden können. Im Gegensatz zur reinen datenbasierten Zustandsdiagnose, die im Nachgang einer Störung die Ursachen ermittelt und so ex post die Ableitung von Verbesserungen ermöglicht, werden prädiktive Datenmodelle so trainiert, dass eine Zusammenführung von Fehlerbild und Ursache bereits vor dem tatsächlichen Auftreten des Fehlers geschieht. Dabei dienen Daten aus der kontinuierlichen Zustandsüberwachung (Condition Monitoring) als Eingangsgröße für Analysemodelle, die aufgrund der großen Datenmengen zunehmend auf Verfahren der Künstlichen Intelligenz zurückgreifen. Dahingehend wurden in den vergangenen Jahren bereits zahlreiche Anwendungsfälle für die produzierende Industrie identifiziert und die Grenzen der technischen Umsetzbarkeit kontinuierlich ausgeweitet.

Maximale Ausnutzung des Abnutzungsvorrates bei gleichzeitiger Verringerung der Instandsetzungsdauer durch den Einsatz von Zustandsprognosen
Maximale Ausnutzung des Abnutzungsvorrates bei gleichzeitiger Verringerung der Instandsetzungsdauer durch den Einsatz von ZustandsprognosenBild: FIR e. V. an der RWTH Aachen

Aufbruch ins Ungewisse

Der Entschluss, Predictive Maintenance im eigenen Unternehmen einzuführen, markiert häufig den Start eines aufwendigen Projektes mit ungewissem Ausgang. Aufgrund der technischen Feinheiten und teilweise hohen Kapitalintensität gerät die grundlegende Fragestellung, welcher konkrete Mehrwert durch Predictive Maintenance realisiert werden soll, oft aus dem Fokus der Betrachtung. Denn allein die Fähigkeit, Ausfallzeitpunkte im Voraus zu bestimmen, stiftet noch keinen Mehrwert für die Produktion und somit für die Wertschöpfung eines Unternehmens. Vielmehr stellt Predictive Maintenance nur ein weiteres Werkzeug im Werkzeugkasten der Instandhaltung dar, um beispielsweise eine Steigerung des Planungsgrades oder der OEE (Overall Equipment Effectiveness) zu realisieren. Die nachfolgende beispielhafte Schilderung illustriert dies.

Wissen ist der Anfang

Angenommen ein Instandhalter weiß aufgrund eines erfolgreich implementierten Predictive-Maintenance-Systems, dass die Hydraulikpumpe einer Pressenanlage in drei Tagen nicht mehr über ausreichend Druck für den störungsfreien Betrieb verfügen wird, dann stellt dies zwar einen erfolgreichen Anwendungsfall von Predictive Maintenance dar, hier entsteht jedoch noch kein quantifizierbarer Mehrwert. Denn: Einerseits müssen aus der Prognose operative Entscheidungen abgeleitet werden können, die z.B. den rechtzeitigen Austausch des defekten Bauteils ermöglichen, andererseits lohnt sich der hohe Implementierungsaufwand des Systems oftmals erst, wenn der Anwendungsfall mehrwertstiftend auf weitere Maschinen übertragen werden kann. In diesem Fall spricht man nicht mehr von einem Anwendungsfall, sondern von einem lohnenden Business Case.

Fehlende Anker in die Praxis

Die Gründe, warum es vielen Unternehmen noch nicht gelingt, Predictive Maintenance in der Breite als funktionierende Business Cases auszurollen, sind vielfältig. Neben der mangelnden Definition eines klaren Zielbilds können auch organisationale und kulturelle Aspekte im Sinne der Akzeptanz eine Hürde bei der Einführung von Predictive Maintenance darstellen. Vertrauen die Instandhalter den Störungsvorhersagen nicht und verlassen sich eher auf ihre Erfahrung, schränkt dies den Nutzen des Systems und das Skalierungspotenzial ein. Der Aufbau von Akzeptanz bedingt auf der Systemebene vor allem eine minimale Anzahl an Fehlalarmen, was eine möglichst hohe Modellgüte voraussetzt. Die zugrundeliegenden Datenmodelle benötigen dafür vor allem spezifische Fehlerdaten, um verlässliche Aussagen über den zukünftigen Zustand eines Assets treffen zu können. Oft mangelt es in der Praxis sowohl an fehlerspezifischen Daten als auch an der Quantität und Qualität der Daten, was einen unmittelbaren negativen Effekt auf die Güte des Prognosemodells und somit die Akzeptanz einer Predictive-Maintenance-Lösung hat. Unternehmen müssen sich daher die Frage stellen, inwieweit es wirtschaftlich sinnvoll ist, eine Maschine bewusst ausfallen zu lassen, um datenbasierte Fehlerbilder zu erhalten. In vielen Fällen kann auch die proaktive Durchführung von Verbesserungsmaßnahmen die effektivere Lösung sein. Predictive Maintenance ist demnach zwar als Technologie-Projekt umsetzbar, hat sich aber noch nicht in der breiten betrieblichen Praxis durchgesetzt. In vielen Betrieben mangelt es aktuell noch an Methoden für eine umfassende Berücksichtigung der implizierten Interdependenzen und den zielgerichteten Einsatz von Zustandsprognosen in der Instandhaltung.

Seiten: 1 2 3Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Echtzeitsteuerung aus der Cloud

Echtzeitsteuerung aus der Cloud

Die Stuttgarter Maschinenfabrik bildet eine vollständig digitalisierte
Produktionsumgebung ab, in der maßgeschneiderte Produkte innerhalb der physikalischen Grenzen selbstorganisiert hergestellt werden können. Das erfordert eine neue technologische Infrastruktur, die auf dem Einsatz konvergenter Kommunikationstechnik und Echtzeit-Virtualisierung basiert. Zur Verwaltung virtualisierter Echtzeit-Steuerungsanwendungen bedarf es Erweiterungen von Orchestrierungswerkzeugen, die Cloud-Computing den notwendigen Determinismus ermöglichen.

Bild: INOSOFT GmbH
Bild: INOSOFT GmbH
Die Software hinter 
den Leitkegeln

Die Software hinter den Leitkegeln

X-Cone ist ein System zur Verwaltung von Leitkegeln im Straßenverkehr. Dessen Hersteller Buchhaus nutzt eine
Visualisierungslösung von Lenze, in der wiederum VisiWin 7 von Inosoft integriert wurde. Eine HMI-Software, die webbasiertes Arbeiten und Responsive Design unterstützt.

Bild: Uhlmann Pac-Systeme
Bild: Uhlmann Pac-Systeme
Weniger Risiko 
und bessere Qualität

Weniger Risiko und bessere Qualität

Die Industrie muss immer flexibler und schneller auf ihre Märkte reagieren, das gilt auch für Pharmaunternehmen. Infolgedessen werden Lieferzeiten ein zunehmend
entscheidendes Thema. Uhlmann Pac-Systeme, Systemanbieter für das Verpacken von Pharmazeutika aus Laupheim, wollte deshalb kürzere Durchlaufzeiten, beschleunigte Prozesse und Mehrkörpersimulation erreichen – und setzt dabei auf Simulationssoftware von Machineering.

Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Neues Modalanalysesystem mit bis zu 32 Sensoren

Neues Modalanalysesystem mit bis zu 32 Sensoren

Zur Schwingungsanalyse von Maschinen wurde am IFW ein neues Modalanalysesystem Simcenter SCADAS mobile der Firma Siemens beschafft. Hiermit ist es möglich sowohl die Eigenfrequenzen der Maschine oder eines Bauteils mit einer Modalanalyse, als auch die während des Prozess auftretenden Schwingungen mit einer Betriebsschwingungsanalyse zu identifizieren.

Bild: Contrinex Sensor GmbH
Bild: Contrinex Sensor GmbH
Taschenspieler

Taschenspieler

Smarte Sensoren sind das Herzstück der digitalen Fabrik: Sie machen
Anwendungen wie Condition Monitoring oder Predictive Maintenance überhaupt erst möglich. Die intelligenten Sensoren von Contrinex eignen sich für zahlreiche Einsatzgebiete, denn sie vereinen mehrere Erfassungsmodi in einem einzigen Gerät. Jetzt hat das Unternehmen als Zubehör das Tool PocketCodr-Konfigurator auf den Markt gebracht, mit dem sich die Sensoren ohne IT-Kenntnisse einrichten und abfragen lassen.