KI- und datenbasierte Optimierung von Maschinen

Leistung ankurbeln

Obwohl Ingenieure Maschinen und Anlagen kontinuierlich verbessern, bleibt ihnen das komplette Potenzial im laufenden Betrieb häufig verborgen. Daten- und KI-getriebene Analysen können hier Licht ins Dunkel bringen - und eine Vielzahl an positiven Effekten bewirken, wie die Performance von Maschinen verbessern oder neue Erkenntnisse über Produktionsprozesse gewinnen, wie die Lösung von Optalio zeigt.
Visualisierung zweier exemplarischer Zeitreihen von Messwerten sowie manueller physikalischer Schwellwerte.
Visualisierung zweier exemplarischer Zeitreihen von Messwerten sowie manueller physikalischer Schwellwerte. Bild: Optalio GmbH

Die Digitalisierung hat einen Grad an Automatisierung und Überwachung von Prozessen ermöglicht, der zuvor undenkbar war. Trotzdem ist ihr Potenzial in vielen Bereichen noch lange nicht ausgeschöpft. Maschinen und Anlagen erzeugen während des Betriebs unzählige Daten. Viele davon stehen im direkten Zusammenhang mit den Anforderungen an einen Prozess. So müssen beispielsweise bei der Herstellung von Folien aus Kupfer oder Aluminium unter anderem fest definierte Temperaturen, Drücke und Zeiten eingehalten werden, um die hohe Qualität des Endprodukts sicherzustellen. Während jedes einzelnen Produktionsschritts (Schmelzen, Gießen, Walzen, Schneiden/Stanzen, Kaschieren…) fallen Daten an. Umfangreich erfasst und ausgewertet können diese für Prognosen herangezogen werden oder langfristig sogar neue Erkenntnisse zur Optimierung ganzer Produktionsverfahren liefern.

 Statistische Darstellung einer exemplarischen Zeitreihe von Messwerten mittels sogenannter Boxplots.
Statistische Darstellung einer exemplarischen Zeitreihe von Messwerten mittels sogenannter Boxplots.Bild: Optalio GmbH

Im Dreiklang arbeiten

Um aus Maschinendaten sinnvolles Wissen zu ziehen, reicht es nicht, eine Maschine einfach an die IT anzuschließen und Daten zu erheben. Denn hier treffen mit analogen Produktionsanlagen (OT) und IT zwei unterschiedliche Welten aufeinander. Daher muss zunächst der Status quo in einem produzierenden Unternehmen ermittelt, anschließend die passende Infrastruktur implementiert werden, um schließlich die KI-gestützte Analyse durchführen zu können. Erst danach ist es möglich, umfassendes Datenmaterial zu erheben und sinnvoll auszuwerten. Optalio hat hierfür mit Partnern ´Solution Engineering´ entwickelt. Dabei wird zu Beginn genau eruiert, wie der aktuelle Stand in einem Unternehmen aussieht. Dazu gehören etwa der vorhandene Maschinenpark, die bestehende IT-Infrastruktur und ein Soll-Ist-Abgleich von Schnittstellen, Sensorik und weiterer Hardware. Nach der Sichtung vor Ort, die zwischen ein bis drei Tagen in Anspruch nimmt, erstellt Optalio ein Booklet, das neben der genauen Abbildung des Status quo auch eine umfassende Roadmap für alle weiteren Schritte beinhaltet. In der nächsten Stufe erfolgt die Implementierung der erforderlichen Hardware, um eine Industrial-IT-Infrastruktur umzusetzen und so die Datenerhebung zu ermöglichen. Dazu gehören neben Schnittstellen und Sensorik auch Firewalls zum Schutz des Netzwerks. Für die Speicherung der Daten dient entweder eine On-Premise-Lösung über einen Server direkt beim Kunden oder der Rückgriff auf eine sichere Cloud. Erst im letzten Schritt werden die Daten erhoben, aufbereitet und über die proprietäre KI von Optalio analysiert.

Bild: Optalio GmbH

Punkte miteinander verbinden

Nach der Datenerhebung und -auswertung rückt die eigentlichen Herausforderungen der Maschinenoptimierung in den Fokus. Dazu zählen beispielsweise zu hoher Ausschuss, übermäßiger Energieverbrauch oder Leistungsschwankungen. Hier beginnt der Blick ins Unbekannte, denn bislang sind die Zusammenhänge verschiedener Parametern wie Druck, Temperatur, Viskosität, Drehzahlen, Durchfluss… nur anhand der Anforderungen an einen Prozess bekannt. Doch wie kommt es zu Ausschuss, wenn die physikalischen, chemischen und materialwissenschaftlichen Eigenschaften eigentlich klar und Anlagen genau darauf eingestellt sind?

Diese bislang unbekannten Zusammenhänge werden mithilfe von Data Engineering und KI erschlossen. Dabei sind die Ursachen individuell vom Unternehmen, der eingesetzten Maschinen und den Verfahren abhängig. Bereits kleinste Abweichungen zu Beginn eines Prozesses können zu Diskrepanzen in der Qualität des Endprodukts führen. Ziel ist es daher, solche Nuancen aus der Masse der verschiedensten Daten zu erkennen und logische Verknüpfungen zu entdecken. Konkret etwa Fragen wie: Welche Bedingungen herrschten vor, als es zu Ausschuss kam? Um Antworten zu finden, kommt es auf die Quantität und Qualität der Daten an. Je mehr und je hochwertiger die Daten sind, desto eher lassen sich nicht nur Korrelationen, sondern auch Kausalitäten erkennen.

Bündel an Vorteilen

Selbst Produktionsverfahren, die auf den ersten Blick einfach erscheinen, erfolgen in hochkomplexen Systemen. Um spürbare Ergebnisse zu erzielen, muss daher für die Datenerhebung und Analyse mit Zeiträumen von mehreren Monaten bis Jahren gerechnet werden. Steht jedoch einmal die Infrastruktur zur Datenerhebung und -analyse, kann diese automatisch im Hintergrund mitlaufen und auch jederzeit erweitert werden.

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: INOSOFT GmbH
Bild: INOSOFT GmbH
Die Software hinter 
den Leitkegeln

Die Software hinter den Leitkegeln

X-Cone ist ein System zur Verwaltung von Leitkegeln im Straßenverkehr. Dessen Hersteller Buchhaus nutzt eine
Visualisierungslösung von Lenze, in der wiederum VisiWin 7 von Inosoft integriert wurde. Eine HMI-Software, die webbasiertes Arbeiten und Responsive Design unterstützt.

Bild: Uhlmann Pac-Systeme
Bild: Uhlmann Pac-Systeme
Weniger Risiko 
und bessere Qualität

Weniger Risiko und bessere Qualität

Die Industrie muss immer flexibler und schneller auf ihre Märkte reagieren, das gilt auch für Pharmaunternehmen. Infolgedessen werden Lieferzeiten ein zunehmend
entscheidendes Thema. Uhlmann Pac-Systeme, Systemanbieter für das Verpacken von Pharmazeutika aus Laupheim, wollte deshalb kürzere Durchlaufzeiten, beschleunigte Prozesse und Mehrkörpersimulation erreichen – und setzt dabei auf Simulationssoftware von Machineering.

Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Neues Modalanalysesystem mit bis zu 32 Sensoren

Neues Modalanalysesystem mit bis zu 32 Sensoren

Zur Schwingungsanalyse von Maschinen wurde am IFW ein neues Modalanalysesystem Simcenter SCADAS mobile der Firma Siemens beschafft. Hiermit ist es möglich sowohl die Eigenfrequenzen der Maschine oder eines Bauteils mit einer Modalanalyse, als auch die während des Prozess auftretenden Schwingungen mit einer Betriebsschwingungsanalyse zu identifizieren.

Bild: Contrinex Sensor GmbH
Bild: Contrinex Sensor GmbH
Taschenspieler

Taschenspieler

Smarte Sensoren sind das Herzstück der digitalen Fabrik: Sie machen
Anwendungen wie Condition Monitoring oder Predictive Maintenance überhaupt erst möglich. Die intelligenten Sensoren von Contrinex eignen sich für zahlreiche Einsatzgebiete, denn sie vereinen mehrere Erfassungsmodi in einem einzigen Gerät. Jetzt hat das Unternehmen als Zubehör das Tool PocketCodr-Konfigurator auf den Markt gebracht, mit dem sich die Sensoren ohne IT-Kenntnisse einrichten und abfragen lassen.