Industrial Internet of Things

IIoT-Vernetzung in der Produktion beschleunigen

Mittlerweile gibt es zahlreiche Optimierungsansätze, die auf IIoT-Vernetzung und KI-Anwendungen wie Bilderkennung basieren. Cloud-Plattformen helfen dabei, diese Technologien in den Produktionsalltag zu integrieren und die Entscheidungsfindung vor Ort an der Maschine zu unterstützen.
"Produzierende Unternehmen können IIoT einfach anwenden und in vielen Bereichen nutzen", sagt Florian Greschner, Senior Data Scientist bei der Cosmo Consult Gruppe.
„Produzierende Unternehmen können IIoT einfach anwenden und in vielen Bereichen nutzen“, sagt Florian Greschner, Senior Data Scientist bei der Cosmo Consult Gruppe.Bild: ©Destina/stock.adobe.com

Intelligente Algorithmen und die Möglichkeit einer günstigen Echtzeitverarbeitung rücken derzeit Produktionsdaten in den Vordergrund, die bisher oft links liegen gelassen wurden. Durch eine Vernetzung im Industrial Internet of Things (IIoT) lassen sich mit Ansätzen wie Predictive Control heute Maschinenparameter besser steuern und die Qualität weiter optimieren. Künstliche Intelligenz (KI) hilft aber auch, Stillstands- und Rüstzeiten zu verkürzen. ‚Cognitive Services‘ erlauben beispielsweise die Bilderkennung an der Produktionsstraße. Dabei wird per Foto oder Video die Qualität analysiert und Schwankungen sind frühzeitig erkennbar. Zum einen können dann Maschinenparameter angepasst, zum anderen Maßnahmen für vorausschauende Wartung ergriffen werden. Die einzelnen Technologien befinden sich bereits seit einigen Jahren im Einsatz – doch bisher waren Ansätze wie Predictive Control für kleine und mittelständische Unternehmen (KMU) kaum bezahlbar. Das ändert sich mit Industrie-Cloud-Plattformen wie Microsoft Azure, die keine einmaligen Investitionskosten erfordern und die Einstiegshürden deutlich reduzieren.

Bild: ©pressmaster/stock.adobe.com

Cloud-Plattform als Verknüpfung zur KI

So lohnt sich auch mit zehn bis 15 Maschinen und nur wenig vorhandenen Daten der Einstieg in die KI-Nutzung. Vorkalibrierte Modelle, die dann mit den eigenen Daten trainiert werden, vereinfachen die bisher aufwendigen Data-Science-Aufgaben deutlich. KMU können auf dieser Basis mit nur wenig externer Unterstützung durch Partner viel Optimierungspotenzial heben. Wie lässt sich das Maschinenpersonal vor Ort unterstützen? Was geht als nächstes auf die Produktionsstraße? Wie viele Kollegen werden morgen an der Maschine gebraucht, wann muss eine Servicetechnikerin zur Anlage, weil sich Probleme abzeichnen? Die Azure-Plattform stellt für viele dieser Fragestellungen bereits Programmkomponenten zur Verfügung. Sie bildet die Grundlage, auf der einerseits Devices wie IIoT-Hubs eingebunden werden, andererseits die bestehenden Anwendungen in der Fabrik. Ähnlich wie eine Middleware organisiert sie das Datenmanagement für alle Komponenten zentral.

KI, Machine Learning und Data Analytics integrieren

Die Cloud liegt praktisch als Schicht unter den Anwendungen in der Fabrik: Hier werden die Daten zusammengestellt, verarbeitet und analysiert. Weil alles auf einer Plattform stattfindet, ist der Wartungsaufwand geringer und das Schnittstellenmanagement findet praktisch automatisiert statt. Die Azure Synapse-Dienste von Microsoft vereinfachen das Zusammenführen aller Datenquellen für Analysen und die Zusammenarbeit aller Beteiligten in einem Datenanalyse-Projekt: Domänenexperten aus der Produktion, Data Engineers, Data Scientists und Entwickler. Konnektoren gibt es für nahezu alle gängigen Systeme und Sensoren, darunter ERP-Systeme wie Microsoft Dynamics oder SAP. Daten aus Anwendungen und IoT-Geräten werden in eine Pipeline aufgenommen und an die entsprechenden Services weiterverteilt. Dazu gehört beispielsweise auch die Verarbeitung von Video-Streaming-Daten in Echtzeitanalysen für die Qualitätskontrolle. Anwendungen in der Cloud sind immer skalierbar: Klein anzufangen und die Lösung bei Bedarf auszubauen, hat sich in der Praxis gut bewährt. Zahlreiche Komponenten sind in kleinen Versionen sogar teilweise kostenfrei. Soll dann ein System auf zehn Werke ausgerollt werden, ist eine Erweiterung problemlos möglich. Auch viele Datensicherheitsaspekte, zum Beispiel die Verschlüsselung, sind durch die Plattform mit abgedeckt. Durch die Wahl von Rechenzentren in Deutschland oder der EU ist die DSGVO-Konformität gesichert.

Die richtigen Daten an der richtigen Stelle

Um die Daten an der passenden Stelle im Prozess nutzen zu können, werden typischerweise vorhandene Dashboards um ein neues Feld erweitert oder eine Zelle mit dem aktuellen Wert vorausgefüllt, sodass die Mitarbeitenden diesen nur noch bestätigen müssen. Der Vorteil: Die Menschen in der Produktion brauchen sich nicht umstellen, sondern arbeiten mit bekannten Tools. Dafür gilt es jedoch, die entsprechenden Daten zu akquirieren und das jeweilige System damit zu füttern. Um den bestmöglichen Nutzen zu erzielen, hilft es jedoch nicht, wahllos Daten zu sammeln und zu speichern. Oft genug stellt sich bei der Analyse und Anwendung heraus, dass relevante Informationen nicht oder nicht mit der nötigen Qualität gespeichert wurden – z.B. ohne passenden Zeitstempel oder in der falschen Granularität. Die Erfahrung zeigt: Das interdisziplinäre Zusammenspiel zwischen Prozess-Knowhow und Datenwissen ist absolut wesentlich. Es ist meist zielführender, Daten mit Blick auf konkrete Fragenstellungen zu sammeln, anstatt unkoordiniert mit Sensorik alle Maschinendaten zu speichern: So kommen am Ende auch die richtigen Daten an der richtigen Stelle an.

Seiten: 1 2Auf einer Seite lesen

Thematik: Software
|
Cosmo Consult SSC GmbH

Das könnte Sie auch Interessieren

Bild: B&R Industrie-Elektronik GmbH
Bild: B&R Industrie-Elektronik GmbH
Flexibel lizenziert und sicher

Flexibel lizenziert und sicher

Als Automatisierungsanbieter muss B&R einen Spagat bewältigen: Zum einen gilt es, permanent neue
Technologien in neue Produkte zu gießen und auf den Markt zu bringen. Zum anderen müssen die Kunden aber auch zuverlässig und langfristig mit bestehenden Produkten und Lösungen versorgt werden. Dazu zählt
Hard- und Software, die über eine Einmalzahlung oder als Jahresabonnement gekauft werden kann. Die Anwender entwickeln mit der Engineering-Plattform Automation Studio auch ihre eigenen Lösungen und wollen diese wiederum für die Endkunden lizenzieren. Um hier einen zuverlässigen und nachhaltigen Weg für die gesamte Produktpalette zu beschreiten, arbeitet B&R mit Wibu-Systems zusammen.

Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Echtzeitsteuerung aus der Cloud

Echtzeitsteuerung aus der Cloud

Die Stuttgarter Maschinenfabrik bildet eine vollständig digitalisierte
Produktionsumgebung ab, in der maßgeschneiderte Produkte innerhalb der physikalischen Grenzen selbstorganisiert hergestellt werden können. Das erfordert eine neue technologische Infrastruktur, die auf dem Einsatz konvergenter Kommunikationstechnik und Echtzeit-Virtualisierung basiert. Zur Verwaltung virtualisierter Echtzeit-Steuerungsanwendungen bedarf es Erweiterungen von Orchestrierungswerkzeugen, die Cloud-Computing den notwendigen Determinismus ermöglichen.

Bild: INOSOFT GmbH
Bild: INOSOFT GmbH
Die Software hinter 
den Leitkegeln

Die Software hinter den Leitkegeln

X-Cone ist ein System zur Verwaltung von Leitkegeln im Straßenverkehr. Dessen Hersteller Buchhaus nutzt eine
Visualisierungslösung von Lenze, in der wiederum VisiWin 7 von Inosoft integriert wurde. Eine HMI-Software, die webbasiertes Arbeiten und Responsive Design unterstützt.

Bild: Uhlmann Pac-Systeme
Bild: Uhlmann Pac-Systeme
Weniger Risiko 
und bessere Qualität

Weniger Risiko und bessere Qualität

Die Industrie muss immer flexibler und schneller auf ihre Märkte reagieren, das gilt auch für Pharmaunternehmen. Infolgedessen werden Lieferzeiten ein zunehmend
entscheidendes Thema. Uhlmann Pac-Systeme, Systemanbieter für das Verpacken von Pharmazeutika aus Laupheim, wollte deshalb kürzere Durchlaufzeiten, beschleunigte Prozesse und Mehrkörpersimulation erreichen – und setzt dabei auf Simulationssoftware von Machineering.

Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Neues Modalanalysesystem mit bis zu 32 Sensoren

Neues Modalanalysesystem mit bis zu 32 Sensoren

Zur Schwingungsanalyse von Maschinen wurde am IFW ein neues Modalanalysesystem Simcenter SCADAS mobile der Firma Siemens beschafft. Hiermit ist es möglich sowohl die Eigenfrequenzen der Maschine oder eines Bauteils mit einer Modalanalyse, als auch die während des Prozess auftretenden Schwingungen mit einer Betriebsschwingungsanalyse zu identifizieren.

Bild: Contrinex Sensor GmbH
Bild: Contrinex Sensor GmbH
Taschenspieler

Taschenspieler

Smarte Sensoren sind das Herzstück der digitalen Fabrik: Sie machen
Anwendungen wie Condition Monitoring oder Predictive Maintenance überhaupt erst möglich. Die intelligenten Sensoren von Contrinex eignen sich für zahlreiche Einsatzgebiete, denn sie vereinen mehrere Erfassungsmodi in einem einzigen Gerät. Jetzt hat das Unternehmen als Zubehör das Tool PocketCodr-Konfigurator auf den Markt gebracht, mit dem sich die Sensoren ohne IT-Kenntnisse einrichten und abfragen lassen.