Machine Learning für Prozessparameter

Die intelligente Werkzeugmaschine

Selbsterregte Schwingungen führen in der Zerspanung schnell zu einer schlechten Bearbeitungsqualität. Konservative Prozessstellgrößen beugen dem vor, kosten aber Produktivität. Dies kann sich nun mit Hilfe von maschinellem Lernen (ML) ändern. Mit dieser KI-Technologie können Werkzeugmaschinen aus dem Fertigungsprozess lernen, welche Stellgrößen geeignet sind und diese autonom anpassen.
Die Machine-Learning-gestützte Wahl von Prozessstellgrößen
Die Machine-Learning-gestützte Wahl von ProzessstellgrößenBild: Rei / 96831 / IFW

Die Wahl von Prozessstellgrößen wie Schnittgeschwindigkeit fordert Expertenwissen sowie kosten- und zeitintensive Einfahrprozesse. Ändern sich die Prozessbedingungen, beispielsweise aufgrund thermischer Einflüsse oder Werkzeugverschleiß, sollten die Prozessstellgrößen neu angepasst werden. Nur so kann weiterhin möglichst produktiv gearbeitet werden. Eine prozessparallele, autonome Adaption ist bisher nur vereinzelt in einfachen Fällen möglich, etwa beim Vorschub. Am Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) in Hannover wird erforscht, wie Werkzeugmaschinen mit künstlicher Intelligenz lernen können, welche Parameter besonders geeignet sind und wie diese autonom an die aktuelle Prozesssituation anzupassen sind. Dafür werden sowohl Prozessinformationen aus Beschleunigungs- und Dehnungssensoren, wie auch eine prozessparallele Abtragssimulation zur Ermittlung der aktuellen Eingriffsbedingungen verwendet.

Mit Sensordaten und Simulation Prozesse vollständig erfassen.
Mit Sensordaten und Simulation Prozesse vollständig erfassen.Bild: Leibniz Universität Hannover

Prozessstellgrößen ermitteln

Eine der größten Herausforderungen in der Zerspanung sind unerwünschte, durch den Prozess verursachte sogenannten Ratterschwingungen. Diese führen zu einer verringerten Oberflächenqualität und können Werkzeug und Maschinenkomponenten schädigen. Das Auftreten von Ratterschwingungen ist insbesondere von der eingestellten Kombination aus Schnitttiefe und Spindeldrehzahl abhängig. Für die Wahl geeigneter Parameter, die gleichzeitig zu einer hohen Produktivität und Prozessstabilität führen, werden Stabilitätskarten eingesetzt. Diese werden zur graphischen Darstellung des Verhältnisses zwischen Drehzahl und maximal erreichbarer Grenzschnitttiefe verwendet. Die Erstellung von Stabilitätskarten erfordert zeit- und kostenintensive Experimente sowie ein hohes Maß an Expertenwissen. Zeitliche Veränderungen des Schwingungsverhaltens können bei diesen Verfahren bisher nicht berücksichtigt werden. Aufgrund dessen wird eine Methode benötigt, mit der geeignete Prozessstellgrößen einfach ermittelt und im Prozess autonom angepasst werden können. Der Einsatz von Machine Learning ermöglicht es, kontinuierlich aus der Erfahrung von vorangegangen Prozessen zu lernen. Damit können Stabilitätskarten stetig besser abgebildet und schließlich zur autonomen Wahl und Adaption der Prozessstellgrößen eingesetzt werden.

Sensordaten und Simulation

Damit die Algorithmen aus den Prozessen die Zusammenhänge zwischen Schnittparametern und Schwingungsverhalten erlernen, werden Informationen über die aktuellen Eingriffsbedingungen und über die dynamischen Eigenschaften der Maschine benötigt. Dafür wurde die am IFW entwickelte Abtragssimulation CutS mit der Maschinensteuerung verknüpft, sodass aktuelle Achspositionen aus der Maschinensteuerung direkt in die Simulation übertragen werden. Die Simulation dient so als eine Art Softsensor, der prozessparallel die aktuellen Eingriffsbedingungen bestimmt. Um unerwünschte Schwingungen zu erkennen, werden am Spindelschlitten applizierte Beschleunigungs- und Dehnungssensoren verwendet. Die Daten dieser Sensoren werden zusammen mit den berechneten Eingriffsbedingungen und den aktuellen Spindeldrehzahlen aus der Maschinensteuerung in einem Echtzeitsystem erfasst und ausgewertet. Durch die gemeinsame Datenerfassung können die Sensordaten zu jedem Zeitpunkt den tatsächlichen Eingriffsbedingungen zugeordnet werden.

Die Maschine lernt mit

Durch die Erfassung von Sensor- und Simulationsdaten erhält die Maschine laufend neue Informationen über die Zusammenhänge zwischen Prozessstellgrößen und Schwingungsverhalten. Die Sensor- und Steuerungsdaten werden mit bis zu 10kHz abgetastet, um auftretende Schwingungen möglichst schnell und präzise zu erfassen. Durch diese hohe Abtastrate entstehen sehr große Datenmengen. Diese Daten werden zunächst in einen Pufferspeicher geschrieben und anschließend außerhalb der Echtzeitumgebung in einer Datenbank lokal gespeichert. Sobald genügend Netzwerkkapazität vorhanden ist, werden die Daten auf einen Server weitergeleitet und gesichert. Die zentrale Speicherung eröffnet die Möglichkeit, Daten von mehreren Werkzeugmaschinen in einem gemeinsamen Speicher ablegen zu können. Die ML-Algorithmen können dadurch regelmäßig mit neuen Daten trainiert werden. Resultierend aus der fortlaufenden Datenanalyse können die Parametereinstellungen stetig verbessert werden. Veränderungen der Prozessbedingungen werden fortlaufend erkannt und die Parameter autonom angepasst.

Seiten: 1 2Auf einer Seite lesen

www.ipeg.uni-hannover.de
Leibniz Universität Hannover

Das könnte Sie auch Interessieren

Bild: Trumpf
Bild: Trumpf
Leistung am 
laufenden Band

Leistung am laufenden Band

Sehr geringe Rüst- und Beladezeiten, bestmögliche Materialausnutzung und mehr Flexibilität bei der Entladung: Die neue Trumpf Laserblanking-Anlage verarbeitet ein kontinuierliches Blechcoil komplett automatisch bis hin zur Absortierung der fertigen Teile per Roboter. Das Projekt wurde in Rekordzeit entwickelt – auch aufgrund einer maßgeschneiderten Applikation für die Robotersteuerung auf Basis der Sinumerik One von Siemens.

Maschinenbauer erwarten Wachstum trotz steigernder Energiepreise

Maschinenbauer erwarten Wachstum trotz steigernder Energiepreise

Die Unternehmen im Maschinen- und Anlagenbau stellen sich auf spürbar härtere Wintermonate ein, können dabei aber immer noch auf Wachstum im laufenden und teilweise auch im kommenden Jahr bauen. Rund drei von vier Unternehmen erwarten im laufenden Jahr ein nominales, wenngleich vornehmlich inflationsgetriebenes Umsatzwachstum.

Bild: Sieb & Meyer AG
Bild: Sieb & Meyer AG
Ein weites Feld

Ein weites Feld

Frequenzumrichter ist nicht gleich Frequenzumrichter: Neben Standardausführungen und Modellen für mobile Applikationen stellen High-Speed-Umrichter für stationäre Applikationen eine besondere Nische dar. Genau hier positioniert sich das Unternehmen Sieb & Meyer – mit einer breiten Palette an Modellen und Ausführungen. Denn auch in diesem Bereich gilt es, auf die verschiedenen Anforderungen der jeweiligen Anwendungen einzugehen.