Predictive Asset Management

Anlagen KI-gestützt am Laufen halten

Die Anlagenverfügbarkeit soll hoch, die Wartungsdauer niedrig sein - ein Balanceakt. Mit dem KI-Framework Deep Qualicision gibt es dafür ein System, das bei Entscheidungen und Optimierungen unterstützt und von KI-Experten und Prozessverantwortlichen bedienbar ist.
Wirkungs- und Beziehungsmatrix - KI-gelernte Qualitative Labels mit Zusammenhängen
Wirkungs- und Beziehungsmatrix – KI-gelernte Qualitative Labels mit ZusammenhängenBild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Um unvorhergesehenen Maschinenstillständen vorzubeugen, setzen Unternehmen auf vorausschauende Wartungs- und Instandhaltungsstrategien. Die Gratwanderung zwischen Wartungsaufwand und Verfügbarkeit wird mit der Zahl der Anlagen und Einflussfaktoren jedoch schwieriger. Insbesondere Betreiber von Anlagenverbänden verfolgen daher oft eine Predictive Asset Management-Strategie, deren Kern darin besteht, auf Basis der Kenntnis und Bewertung des Zustands von Maschinen Wartungs- und Instandhaltungsentscheidungen zu treffen. Hier können technische Daten wie Druck, Temperatur und Arbeitsstunden seit der letzten Wartung einfließen, aber auch betriebswirtschaftliche Aspekte wie Termintreue, Auslastung der Ressourcen, Abschreibungszustand oder Modernisierungsbedarf.

IT reduziert Komplexität

Aufgrund der Menge an kombinierbaren Einflussfaktoren eignen sich für die Datenverarbeitung auf diesem Feld Verfahren der künstlichen Intelligenz (KI), etwa maschinelles Lernen (ML). Das Deep-Qualicision-KI-Framework der PSI FLS Fuzzy Logik & Neuro Systeme etwa hat solche Funktionen implementiert und ermöglicht zudem über eine bereitgestellte Erklärebene die Systembedienung auch für Nutzer ohne KI-Kenntnisse. Die Software kombiniert dazu eine selbstlernende Entscheidungsunterstützung und -optimierung mit KI-Prognoseverfahren. Zunächst beobachtet die Software, in welchen Temperaturbereichen bspw. die Maschine Sensordaten bereitstellt, die auf die Notwendigkeit einer Wartung hindeuten. Dazu benutzt das System eine sogenannte Labeling-Funktion, mit der eine Unterscheidung zwischen positiven, also eher erwünschten Maschinenzuständen und negativen Wertebereichen, also unerwünschten Maschinenzuständen möglich ist. Die zugrunde liegenden Sensordaten werden dementsprechend mit positiven und negativen Konnotationen – den Labels – versehen. Die Software stellt zwischen den gelabelten Datensätzen Zusammenhänge her und erkennt darin Muster, aus denen sie kurz-, mittel- oder langfristige Wartungsempfehlungen ableitet. Durch die – einmal festgelegten – Labeling-Funktionen lassen sich beinahe beliebige Signalverläufe verarbeiten und automatisch labeln. Die Software visualisiert diese gelabelten Daten in Form von Wirkungs- und Beziehungsmatrizen.

KI-Entscheidungen verstehen

In der oberen Abbildung ist zu erkennen, wie für eine Maschine die Empfehlung für eine dringende Wartung ausgegeben wird. Diese errgänzt eine Erklärung, aus welchen Faktoren heraus dieser Ratschlag entstand: Aus der Messung der Vibrationsdaten sowie des definierten dynamischen Wartungsintervalls. So können die Menschen selbst ohne KI-Kenntnisse fundiert entscheiden, ob sie dem Rat folgen oder nicht. Zudem stehen ihnen Schieberegler zur Verfügung, über die sie die Sensitivität der Labels justieren können. Der hinterlegte Lernalgorithmus leitet wiederum sowohl aus den Bestätigungen und Verneinungen als auch aus den Anpassungen über die Regler weitere Muster ab und lernt über ein im KI-Framework integriertes ML-Verfahren dazu.

Predictive Maintenance skalieren

Der Übergang von der vorausschauenden Instandhaltung einer einzelnen Maschine zu einem Predictive Asset Management für Maschinen- und Anlagenparks erfolgt durch zusätzliche Einflussgrößen. Diese können mit den gleichen Systematiken behandelt werden. Das Prinzip des qualitativen Labelns bleibt grundsätzlich gleich. Lediglich die Skalierung ändert sich, etwa bei den Datenbanken dahinter. Ähnliches gilt für die im Hintergrund einsetzbare Lern-Logik: Sie kann Zusammenhänge und Zielkonflikte zwischen Key Performance Indicators (KPIs) und Systematiken auch auf hoher Skalierungsebene erlernen. Die Bedienbarkeit und die Managementfunktionen des Systems bleiben ebenfalls unverändert. So lassen sich Schritt für Schritt größere Systemverbünde aufbauen.

Seiten: 1 2Auf einer Seite lesen

PSI FLS Fuzzy Logik & Neuro Systeme GmbH

Das könnte Sie auch Interessieren

Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Bild: ISW Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Echtzeitsteuerung aus der Cloud

Echtzeitsteuerung aus der Cloud

Die Stuttgarter Maschinenfabrik bildet eine vollständig digitalisierte
Produktionsumgebung ab, in der maßgeschneiderte Produkte innerhalb der physikalischen Grenzen selbstorganisiert hergestellt werden können. Das erfordert eine neue technologische Infrastruktur, die auf dem Einsatz konvergenter Kommunikationstechnik und Echtzeit-Virtualisierung basiert. Zur Verwaltung virtualisierter Echtzeit-Steuerungsanwendungen bedarf es Erweiterungen von Orchestrierungswerkzeugen, die Cloud-Computing den notwendigen Determinismus ermöglichen.

Bild: INOSOFT GmbH
Bild: INOSOFT GmbH
Die Software hinter 
den Leitkegeln

Die Software hinter den Leitkegeln

X-Cone ist ein System zur Verwaltung von Leitkegeln im Straßenverkehr. Dessen Hersteller Buchhaus nutzt eine
Visualisierungslösung von Lenze, in der wiederum VisiWin 7 von Inosoft integriert wurde. Eine HMI-Software, die webbasiertes Arbeiten und Responsive Design unterstützt.

Bild: Uhlmann Pac-Systeme
Bild: Uhlmann Pac-Systeme
Weniger Risiko 
und bessere Qualität

Weniger Risiko und bessere Qualität

Die Industrie muss immer flexibler und schneller auf ihre Märkte reagieren, das gilt auch für Pharmaunternehmen. Infolgedessen werden Lieferzeiten ein zunehmend
entscheidendes Thema. Uhlmann Pac-Systeme, Systemanbieter für das Verpacken von Pharmazeutika aus Laupheim, wollte deshalb kürzere Durchlaufzeiten, beschleunigte Prozesse und Mehrkörpersimulation erreichen – und setzt dabei auf Simulationssoftware von Machineering.

Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Bild: Institut für Fertigungstechnik und Werkzeugmaschinen an der Leibniz Universität Hannover
Neues Modalanalysesystem mit bis zu 32 Sensoren

Neues Modalanalysesystem mit bis zu 32 Sensoren

Zur Schwingungsanalyse von Maschinen wurde am IFW ein neues Modalanalysesystem Simcenter SCADAS mobile der Firma Siemens beschafft. Hiermit ist es möglich sowohl die Eigenfrequenzen der Maschine oder eines Bauteils mit einer Modalanalyse, als auch die während des Prozess auftretenden Schwingungen mit einer Betriebsschwingungsanalyse zu identifizieren.

Bild: Contrinex Sensor GmbH
Bild: Contrinex Sensor GmbH
Taschenspieler

Taschenspieler

Smarte Sensoren sind das Herzstück der digitalen Fabrik: Sie machen
Anwendungen wie Condition Monitoring oder Predictive Maintenance überhaupt erst möglich. Die intelligenten Sensoren von Contrinex eignen sich für zahlreiche Einsatzgebiete, denn sie vereinen mehrere Erfassungsmodi in einem einzigen Gerät. Jetzt hat das Unternehmen als Zubehör das Tool PocketCodr-Konfigurator auf den Markt gebracht, mit dem sich die Sensoren ohne IT-Kenntnisse einrichten und abfragen lassen.