Condition Monitoring verteilter Anlagen

IoT-Monitoring per LPWA-Funkverbindung

Bild: SSV Software Systems GmbH

Begleitend zum rasanten Wachstum an installierten IoT-Geräten haben sich verschiedene Funktechnologien für die Sensordatenübertragung in industriellen IoT-Projekten etabliert. Einige nutzen lizenzpflichtige Frequenzen, wie LTE-m oder NB-IoT. Andere teilen sich die lizenzfreien Bänder im Bereich von 868MHz, 2.4 oder 5GHz. Dazu gehören LoRa, Mioty und WLAN. Die Auswahl der Funktechnologie für eine IoT-Sensorapplikation ist anspruchsvoll und sollte unter Einbeziehung von Experten bearbeitet werden. LoRa und Mioty etwa sind eine gute LPWA-Wahl, wenn pro Tag kleine Datenmengen über größere Entfernungen übertragen werden und sich Firmen um die Netzwerkinfrastruktur weitgehend selbst kümmern. Sollen IoT-Sensoren relativ standortunabhängig in verschiedenen Ländern Daten erfassen, ohne Infrastrukturaufwand zu verursachen und sollen dabei keine monatlichen SIM-Kartengebühren anfallen, kommt NB-IoT als LPWA-Standard in Frage. Auf Grund der geringen Bandbreite werden sowohl für LoRa und Mioty als auch NB-IoT sinnvollerweise Sensoren mit eingebetteten KI-Algorithmen benötigt.

In einer IoT-Monitoringanwendung lassen sich z.B. die Wärmebilddaten einzelner Maschinenkomponenten mit einem 8x8-IR-Sensor-Array einmal je Sekunde erfassen und mit Hilfe eines Machine-Learning-Modells direkt im Sensor binär klassifizieren (Zustand OK oder Zustand kritisch). Dabei entsteht jeweils eine kategoriale Variable, die bei jedem Zustandswechsel per LPWA-Funkverbindung an ein Monitoringsystem gesendet wird. Die Sensoren benötigen zusätzlich eine BLE-basierte Serviceschnittstelle für den ML-Modell-Download.
In einer IoT-Monitoringanwendung lassen sich z.B. die Wärmebilddaten einzelner Maschinenkomponenten mit einem 8×8-IR-Sensor-Array einmal je Sekunde erfassen und mit Hilfe eines Machine-Learning-Modells direkt im Sensor binär klassifizieren (Zustand OK oder Zustand kritisch). Dabei entsteht jeweils eine kategoriale Variable, die bei jedem Zustandswechsel per LPWA-Funkverbindung an ein Monitoringsystem gesendet wird. Die Sensoren benötigen zusätzlich eine BLE-basierte Serviceschnittstelle für den ML-Modell-Download. Bild: SSV Software Systems GmbH

Kategoriale Sensordaten

Die meisten Sensoren erfassen typischerweise eine bestimmte physikalische Messgröße und liefern etwa am Ausgang eine Spannung oder einen Widerstands- bzw. Kapazitätswert, der dem zeitlichen Verlauf der Eingangsmessgröße folgt. Abhängig vom Wirkprinzip des Sensorelements und dem jeweiligen Messverfahren fallen dabei innerhalb einer bestimmten Zeitspanne relativ große Datenmengen an. Bei einem MEMS-Beschleunigungssensor, der die auf eine Testmasse wirkende Trägheitskraft über kapazitive Veränderungen bestimmt, können das je nach Bandbreite und Anzahl der Beschleunigungsachsen schon mehrere tausend Bytes pro Sekunde sein. Selbst bei einem einfachen Infrarot-Sensor-Array mit 8×8 Pixeln zur Temperaturmessung von Flächen und anderen Objekten entstehen über eine bestimmte Entfernung bei einer Auffrischrate von 1Hz immer noch 128 Bytes je Sekunde. Im industriellen IoT, also in der Welt der Maschinen und Anlagen, gibt es unzählige Anwendungen, in denen ein Sensordatenstrom zur Informationsgewinnung über Datenanalysen in einen kategorialen Ausgangswert umgewandelt wird. Ein typisches Beispiel wäre das Condition Monitoring. Dazu gehört sehr häufig die Fragestellung, in welchem Zustand die Maschine jeweils ist (Maschine ist im Standby-Zustand, Maschine ist aktiv und produziert oder die Maschine befindet sich in einer Rüstphase). Ein weiteres Beispiel wäre der Verschleißzustand der Schleifringkomponenten einer Antriebsbaugruppe mit Hilfe von Thermografiebildern. Hier sind lediglich zwei Zustände relevant: OK oder kritisch.

Embedded Data Analytics

Die erforderlichen Sensordatenanalysen für eine möglichst genaue Zustandsklassifizierung sind beim derzeitigen Stand der Technik auch direkt in einem Sensor durchführbar. Die dafür relevanten Funktionsbausteine lassen sich unter dem Oberbegriff TinyML zusammenfassen. Hinter diesem relativ neuen Begriff verbirgt sich eine Sammlung von Methoden und Konzepten für Machine Learning (ML)-Anwendungen mit eingebetteten Mikrorechnersystemen (Embedded Systems). Zu TinyML gehören sowohl Algorithmen und andere Softwarefunktionen als auch Hardwareaspekte. TinyML nutzt gegenwärtig in erster Linie das Supervised Machine Learning. Dieses ML-Verfahren besteht aus den Schritten Modellbildung und Modellnutzung. Im ersten Schritt wird anhand speziell erfasster Daten ein ML-Modell erzeugt und in einer Datei gespeichert. Dabei kommen künstliche neuronale Netzwerke (KNN) zum Einsatz, deren Gewichtungsparameter die Zusammenhänge der erfassten Daten ‚erlernen‘. Dieser Vorgang ist insgesamt sehr rechenintensiv und sollte daher in der Cloud oder auf entsprechend leistungsfähigen Servern erfolgen. Mit dem jeweils erzeugten Modell lässt sich praktisch jede mathematische Regressions- oder Klassifizierungsaufgabe lösen. Entscheidend ist allerdings die Qualität der erfassten Daten, aus denen das KKN die Zusammenhänge erlernt. Via TinyML-Methoden ist aus der Modelldatei ein Embedded-Code zur Modellnutzung erstellbar, die sich direkt in einem Sensor ausführen lässt. Damit lassen sich bisher unbekannte (Sensor-) Eingangsdaten periodisch analysieren. Das Ergebnis ist jeweils ein Regressand (also eine von den Eingangsdaten abhängige Ausgangsvariable) oder eine Klasse. Dieser ML-Modell-basierte Analysevorgang wird auch als Inferenzphase bezeichnet.

ML-Modell erforderlich

Die Schlüsselkomponenten zur Reduzierung des Sensorrohdatenvolumens und zur LPWA-Nutzung sind das Machine-Learning-Modell und eine Inferenzfunktion. Dafür werden auf jeden Fall qualifizierte Daten benötigt, in denen ein Lernalgorithmus die gewünschten Zusammenhänge vorfindet. Sowohl für den Lernvorgang als auch für die spätere Inferenzphase sind einige Parameter zu spezifizieren, die das KNN selbst und die Optimierungsmethodik des Lernvorgangs usw. beschreiben. Das nach dem Lernvorgang vorliegende Modell ist bezüglich der Genauigkeit zu prüfen (davon hängt die Fehlerquote der Inferenz ab). Gegebenenfalls ist die Modellbildung mit veränderten Parametern zu wiederholen. Bei einer zufriedenstellenden Genauigkeit wird das Modell in ein TinyML-Format umgewandelt und in die Sensorsoftware integriert. Um dem interessierten Leser die dafür erforderliche Vorgehensweise beispielhaft aufzuzeigen, wurden unter github.com IR-Wärmebilder als Beispieldaten plus erforderlichem Python-Code für ein geeignetes ML-Modell inklusive einer Beschreibung veröffentlicht, welches sich mit der Open-Source-Bibliothek TensorFlow erstellen lässt.

Seiten: 1 2


  • Zylinderrollenlager für schwere Industriegetriebe und Baumaschinen

    Mit den neuen Zylinderrollenlagern der Baureihe NJ23-ILR stellt Schaeffler eine Serie von Wälzlagern für schwere Industriegetriebe und Baumaschinen vor.


  • Verbindungstechnik neu gedacht

    Edelstahl ist der Materialstandard für Installationen im Reinraum, für Abfüll-, Verpackungs- und Förderanlagen in der Lebensmittelindustrie und für alle korrosionsgefährdeten Bereiche. Leider…